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a b s t r a c t

The seepage of a compressible fluid in an inhomogeneous undeformable granular medium is investigated.
It is assumed that the fluid flow in a porous space is described by the Navier–Stokes equations. It is shown
that, in the case of an inhomogeneous velocity field, a tensor of additional effective stresses occurs in con-
nection with the transfer of fluid particles in a transverse direction when flow occurs around the granules
of the medium in a longitudinal direction. Using the fundamental propositions of Reynolds’ averaging
theory and Prandtl’s mixing path, the structure of the effective viscosity coefficient is determined and
hypotheses are formulated which enable it to be assumed to be independent of the flow velocity. It is
established by comparison with experimental data that the effective viscosity coefficient can exceed the
viscosity coefficient of the flowing fluid by an order of magnitude. The equations of average motion are
obtained, which in the case of an incompressible fluid have the form of the Navier–Stokes equations with
body forces proportional to the velocity. It is established that, in addition to the well-known dimension-
less flow numbers, there is a new number which characterizes the ratio of the Darcy porous drag forces
to the effective viscosity forces. The proposed equations are extended to the case of the flow of an aerated
fluid. The components of the angular momentum vector are used as the required functions instead of
the components of the velocity vector. This enables a solving system of equations to be obtained, which,
apart from the notation, is identical with the similar equations for the case of an incompressible fluid. The
solution of a new problem of the fluid flow in a plane channel with permeable walls is presented using
three models: Darcy’s law for an incompressible and aerated fluid, and also of an aerated fluid taking
the effective viscosity into account. It is established that, for the same pressure drop, the maximum flow
rate corresponds to Darcy’s law. Compressibility leads to its reduction, but by simultaneously taking into
account the compressibility and the effective viscosity one obtains minimum values of the flow rate. The
effective viscosity and aeration of the fluid has a considerable effect on the flow parameters.

© 2010 Elsevier Ltd. All rights reserved.

Numerous experimental papers1–6 show that, for a fluid flow through a granular medium with variable porosity, when the flow field is
inhomogeneous, the velocity profiles that occur differ considerably from the profiles predicted by Darcy’s law. As a rule, experiments have
been carried out in vertical circular tubes, containing a layer of granular material, peculated by a fluid with constant velocity distribution. At
the layer exit considerable changes in the velocity profile were observed: the presence of a minimum in the centre of the tube, a maximum
close to the wall, and zero velocity on the wall itself (i.e., so-called “ears” have been observed).

Characteristic experimental results1 for a tube of radius R = 3.81 cm, filled with spherical particles of diameter d = 0.64 cm, are shown
on the upper graph of Fig. 1 by the points, where �m is the fluid velocity, averaged over the cross section. On the same graph, the dashed
curve represents an attempt to process these results using Darcy’s law, taking into account the experimentally determined change in the
porosity � over the radius (the continuous curve in the lower graph of Fig. 1). The experimental results are in good agreement with Darcy’s
law in the central part of the tube but differ considerably in the boundary region.

This phenomenon has been mainly investigated in two directions. In the earlier investigations,1,2 when processing the experimental
results, Prandtl’s formula was directly invoked for the turbulent shear stresses. Since, in Prandtl’s theory, the shear stresses depend on the
rate of deformation of the shear component according to a square law, the flow pattern must vary when the mean flow velocity changes.
However, no such changes have been observed experimentally, and the authors have got round this contradiction by determining a missing
length for each individual experiment.

Later5,7 the inhomogeneity of the flow field was explained by deformation of the granular layer due to the action of the flowing fluid
and buckling of the supporting net. A theory of the deformation of a granular medium was used in Ref. 7.
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Fig. 1.

The view has been expressed in Refs. 4 and 5 that inhomogeneities of the velocity profile only arise on the free boundary of the layer.
The correctness of Darcy’s law for describing flows with a variable velocity profile was not in question, despite its obvious breakdown in
the boundary region.

Without excluding the influence of the above factors on the fluid flow field, we will show that the experimentally observed results
can be explained by introducing the idea of a transferred effective viscosity, similar in its physical nature to additional Reynolds stresses.
Note that Eqs (1.10) then obtained when inertial terms are neglected is formally similar to the equations proposed by Brinkman8,9 when
investigating the flow of a solvent through tangled macromolecules consisting of long chains, considered as a porous medium. The usual
derivation of Brinkman’s equations consists of using Stokes’ equations of a viscous fluid with external mass forces continuously distributed
in the volume. The latter were assumed to be related to the velocity vector by Darcy’s law. As Brenner has pointed out,10 procedures of this
kind are logically unjustified, since they combine equations describing two different continua. We will show in Section 1 that Eqs (1.10)
are free from this drawback.

We note a recently published book,11 in which, on the basis of fundamental concepts of continuum mechanics, fundamental propositions
of the mechanics of fluids and multiphase media are described in detail. The elements of hydrostatics are discussed, and different forms of
flow of ideal and viscous fluids are considered, as well as the fundamental ideas of the turbulence theory and the theory of similarity and
dimensional analysis. A hydrodynamic theory of the seepage of fluids in uniform and nonuniform, isotropic and anisotropic media is given.

1. The transport phenomenon and the effective viscosity for flow in an inhomogeneous granular medium

When a compressible fluid flows through a porous medium, Darcy’s law and the continuity equations are usually employed to determine
the flow field. In an orthogonal Cartesian system of coordinates xi (i = 1, 2, 3 → x, y, z) these relations take the form

(1.1)

In Eqs (1.1) �i are the components of the mean-velocity vector in an elementary area, normal to the corresponding coordinate axis, �
is the coefficient of viscosity of the flowing fluid, � is its density, P is the pressure and � is the hydraulic drag, which is the inverse of the
Darcy seepage factor. Equations (1.1) must be supplemented by the equation of state, which defines the relation between the density �
and the pressure P. This case will be considered in Section 4. In the second formula of (1.1) and elsewhere summation is assumed over
repeated indices.
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Although Darcy’s law was obtained experimentally and was treated as an independent law of nature, the first formula of (1.1) can be
obtained if, following Zhukovskii,12 we assume that the fluid, flowing in a porous space, is an ideal Euler fluid, on which fictitious porous
drag mass forces ���i act. Euler’s equations can then be written as13

(1.2)

If we carry out the simplest averaging of Eqs (1.2) assuming that �i is the average velocity on elementary areas, normal to the coordinate
axis considered, and inertial forces are neglected, we obtain Darcy’s law (1.1).

A justification of Zhukovskii’s hypothesis regarding the structure of the bulk porous drag force can be obtained using the methods and
approaches developed by Slichter, on the assumption that the granular medium, through which the incompressible viscous percolates,
consists of spherical particles of the same diameter, and that the centres of each of the eight adjoining spheres are at the vertices of a
rhombohedron. These assumptions enable the shape of the porous channel, in which the elementary fluid particles move, to be determined.
The actual porous channel obtained was replaced by a fictitious cylindrical channel of definite dimensions and cross section. Further, using
the well-known analytical solution for laminar flow in such a channel, the average velocity component was found, i.e., the coefficient � in
the first formula of (1.1) was determined.

An independent statement of the results was obtained by Slichter,13 and there have also been numerous investigations by other
researchers, devoted to a theoretical determination of the coefficient �. It follows from these that this coefficient can be represented
in the form

(1.3)

where d is the characteristic size of a granule or pore and f(�) is a dimensionless function of the porosity �, which depends on the shape of
the granules and the type of packing.

In a porous medium, described by Darcy’s law, the full no-slip conditions on the boundary surfaces may not be satisfied. Hence, neither
Darcy’s law itself nor its well-known extensions (the non-linear dependence of the pressure gradient on the velocity vector, the presence of
turbulence and stagnation zones at points of contact of the particles, etc.) cannot explain the phenomena in the boundary region described
above.

When fluid flows around the particles of a granular medium in a longitudinal direction, pulsating components of the velocity occur in
the transverse direction, which are ignored by Darcy’s law. If the average flow velocity changes in a transverse direction, these pulsations
transfer additional momenta from layer to layer, which leads to the occurrence of effective viscosity forces. This phenomenon can be
investigated if it is assumed that a viscous fluid flows in the porous space, the equation of motion of which14 cab be represented in the
form

(1.4)

where �ij are the components of the viscous stress tensor.
We will write the components of the fluid flow velocity in the granular medium �i in the form of the sum of the average smoothed

values �̄i and pulsating components �′
i
, the average values of which are equal to zero, i.e., �i = �̄i + �′

i
. Substituting these values into Eq.

(1.4) and carrying out well-known averaging operations,14 we obtain the equations of averaged motion

(1.5)

which differ from the initial equations (1.4) in the fact that, in accordance with Zhukovskii’s hypothesis, the stresses due to the fluid
viscosity were averaged over the bulk force of the Darcy porous drag, while a consideration of the inertial forces led to the occurrence of
six terms

(1.6)

called additional stresses.
When deriving Eqs (1.5) the physical nature of the velocity pulsations that occur was not stipulated; the fact that they existed was only

important. In the case considered, unlike turbulent flows, the pulsations are due to the presence of granules in the flow field, and hence
it is necessary to establish whether flow modes exist for which the stresses, due to the effective viscosity, are comparable with the other
forces acting on the fluid.

To find the relation between the stresses (1.6) and the average velocity field in the flow (the closure problem) we will use the fundamental
propositions of Prandtl’s mixing path theory. Consider a steady plane translational flow parallel to the x axis, the mean velocity of which
�x = u(y) depends on the transverse coordinate y. The pulsating component of the longitudinal velocity u′ is taken in the form u′ ≈ l ’ du/dy,
where l′ is Prandtl’s mixing length. The pulsating velocity component �′

y = �′ transverse to the average flow is taken as the transfer velocity.
Substituting these quantities into formula (1.6), we obtain
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It can be seen that (�′l′) = const, if we assume that l′ will be shorter the greater the pulsating velocity �′. Assuming that this assertion
holds for the whole flow field (Boussinesq’s hypothesis), we will have

(1.7)

The quantity �e can be treated as an effective (transfer) viscosity coefficient, which occurs when the fluid flow through the porous
medium is spatially inhomogeneous. The effective viscosity coefficient can conveniently be represented in the form �e = ��(�), where �(�)
is a dimensionless porosity function. In the general case of an isotropic medium, the effective stresses form a symmetrical second-rank
tensor, whose components, based on Eqs (1.7), can be expressed in terms of the average velocities in the form

(1.8)

while the components of the complete stress tensor will have the form

(1.9)

By comparing the theoretical results with experimental data it will be shown below that the effective viscosity coefficient exceeds the
viscosity coefficient � by a factor of a hundred. Taking this into account and substituting expression (1.9) into Eq. (1.5), we obtain for an
incompressible fluid

(1.10)

In formulae (1.10) and below we omit the bar over average quantities and assume that summation is carried out over repeated indices.
Equations similar to (1.10) were obtained in a somewhat different form for the plane case in Ref. 15 from phenomenological considerations
as extensions of Stokes’ equations.

Equations similar to (1.10) were also obtained in Refs 16 and 17 on the assumption that the motion of the fluid is described by the
Navier–Stokes equation. The important result that the occurrence of an effective (transfer) viscosity is practically independent of the
natural viscosity of the fluid has not been previously mentioned.

Equations (1.10) were extended in Ref. 16 to anisotropic flows, which occur due to the natural or technogenic anisotropy of a porous
space. The source of technogenic anisotropy may be ordered packing of the granular layer by granules of special shape (for example, Raschig
rings), which enable the flow parameters to be directionally changed18 and enable specified optimality criteria to be satisfied.

Equations (1.10) can be reduced to dimensionless form by choosing certain constant quantities T, h, V and P, characteristic for the flow,
as scales of time, length, velocity and pressure. Denoting the corresponding dimensionless quantities by a prime and introducing, as is
usually done, the dimensionless Strouhal, Euler and Reynolds similitude numbers

we can write Eqs (1.10) in the form

(1.11)

The dimensionless number So represents the ratio of the Darcy porous drag forces to the effective viscosity forces. This was first
proposed in a somewhat different form in Ref. 15. The effect of the So number on the flow pattern will be illustrated below using a number
of examples.

2. Flow in plane and axisymmetric channels

We will consider, as an example, the fluid flow in a porous medium, situated in a long plane channel of height 2h, assuming the porosity
to be constant. It follows from this condition that the coefficients � and � are also constant. Directing the x axis along the middle line of
the channel and substituting the values �y = �z = 0, �x = u(y) into Eq. (1.10), we obtain

The solution of this equation, which satisfies the boundary conditions u = 0 when y = ±h, will be

(2.1)

Graphs of the dimensionless velocity ũ = u(ȳ)/u(0) for a series of increasing values of the number So are shown in Fig. 2, where the
horizontal dashed line represents the solution in the case of Darcy’s law. It follows from the graph that the solution becomes Darcy’s
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Fig. 2.

solution u0 = 	/��) when the So number increases without limit, i.e., when, for a fixed porosity �, the size of the granules is much less than
the channel width. Formulae (2.1) show that when So → 0(� → 0), the solution becomes a Poiseuille parabola.

Knowing the velocity distribution along the channel height y, we obtain the fluid flow rate in an arbitrary cross section x in the form

(2.2)

It follows from formulae (2.2) that, for a specified pressure drop, the flow depends considerably on the dimensionless So number and
decreases from the maximum value Q0 = 2h3	/(��̄) corresponding to Darcy’s law, as the So number decreases by virtue of the increase in
the influence of the effective viscosity. This result has an important practical value since it enables one to judge, from the experimentally
determined dependence of the flow rate on the pressure drop, the actual rheological properties of the flowing fluid.

A graph of the dimensionless flow rate Q̄ = Q�/(h3	) = 2(1 − 
)/�̄ as a function of the dimensionless parameters � and �̄ is shown
in Fig. 3. The curve in the � = 0 plane corresponds to Darcy’s law Q̄ = 2/�̄, while in the plane �̄ = 0 it corresponds to the Navier–Stokes
equations Q̄ = 2/(3�) with a viscosity coefficient of ��.

To determine how the effective viscosity coefficient depends on the porosity,17 the above-mentioned experimental results1 for velocity
profiles in a tube of radius R, filled with a granular medium with a characteristic particle size d, were used.

Equation (1.10) has the following form in the axisymmetric case (the x coordinate is directed along the tube axis)

(2.3)

The coefficient � (1.3) is given by the Kozeny formula, in which the experimental dependence of the porosity on the radius is used (the
lower graph in Fig. 1). Starting from the mechanism by which the effective velocity occurs, the following form of the relation � = �(�) has
been proposed

(2.4)

where A and 
 are dimensionless coefficients, which are independent of the porosity of the medium and the size of the granules.
Equation (2.3) was solved numerically for several values of the tube diameter and the size of the packing granules. It was found that

the value of the parameter A varies in the range from 50 to 60, while the value of the parameter 
 varies in the range from 3.5 to 4. On the
upper graph in Fig. 1 the points represent experimental data for a tube of radius R = 3.81 cm, filled with particles of diameter d = 0.64 cm,
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while the continuous curve represents the velocity profile obtained. The proposed relation (2.4) describes the experimental data quite
well over a wide range of the parameters and shows that, for the usual values of the porosity of 0.3–0.45, the value of � is of the order of
102–103, i.e., the value of the effective viscosity is many times greater than the value of the natural viscosity of the fluid, so the latter can
be neglected.

As was noted above, a number of researchers have shown that non-uniformity of the velocity field only occurs in the outer surface layer
of the granules. To check this assertion, we considered the problem of the flow in a long channel of circular cross section in which there
was a layer of granular material.19 The change in the porosity along the radius was also taken in the form shown on the lower graph of
Fig. 1. We used the Navier–Stokes equations in the parts of the channel that were free from granules. The numerical solution of the problem
showed that perturbations of the velocity profile occur before the fluid enters the layer. They reach maximum values inside the layer and
decrease somewhat in the exit section.

3. Flow in channels with permeable walls

The fluid flow in channels with permeable walls is encountered in many technological processes and is of particular interest for problems
involving the extraction of hydrocarbon raw material, where the high-yield method has become widely used, involving drilling horizontal
boreholes with subsequent use of the hydrofracturing procedure.

We will consider a plane channel of constant width 2h and length a. We will direct the x axis along the middle line of the channel so
that the points x = 0 and x = a correspond to the beginning and end of the channel sections. At the boundaries of the channel, with y = ±h,
we will specify a constant velocity w, which is independent of the x coordinate: �(x, ±h) = ∓w = const. We will denote the pressure at x = a
by Pw, and at x = 0 by Pr(Pw < Pr).

Assuming, in Eqs (1.10), that the forces of inertia of the average motion are negligibly small compared with the porous drag and effective
viscosity forces, we obtain

(3.1)

where u and � are the components of the velocity vector along the x and y axes respectively.
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We will consider the solution of the problem using Darcy’s law. Assuming � = 0 in Eqs (3.1) and integrating the system of equations
obtained, we will have

(3.2)

Hence it follows that the fluid flow rate in the section x = a is related to the pressure drop �P = Pr − Pw by the equality Qw = 4h3�P/(a�̄�).
Note that this quantity, for the same pressure drop, is double the flow rate Q0 corresponding to the flow in a channel with impermeable
walls.

Returning to the complete equations (3.1), we can verify that the velocity components u and �, and the pressure P, which satisfy these
equations and the boundary conditions, have the form

(3.3)

where we have used the notation (2.1) and (2.2).
The first formula of (3.3) shows that the form of the relation ũ(ȳ) = u(x, ȳ)/u(x, 0) is the same as in the case of a channel with impermeable

walls, while the graph for ũ(ȳ) is identical with the graph for ũ = ũ(ȳ), shown in Fig. 2. The relation �̃(ȳ) = �(ȳ)/w is shown in Fig. 2 for a
series of values of the So number. These graphs become graphs corresponding to Darcy’s law as So → 0 (the dashed curves in Fig. 2: for
ũ = ũ(ȳ) the horizontal line and for �̃ = �̃(ȳ) the diagonal line), and as So → 0 they correspond to the Navier–Stokes equations with viscosity
coefficient ��.

It follows from the last formula of (3.3) that the total fluid flow rate in the channel Qw = Q(a) = 2wa is related to the pressure drop
�P = Pr − Pw and, in dimensionless form, the relation

is identical with the relation Q̄ (�̄, �), shown in Fig. 3.

4. The flow of an aerated liquid

Consider the steady flow of an aerated liquid in an undeformed granular medium. We will introduce the momentum vector k = �V with
components ki = ��i. We will assume that the flow in the porous space is described by Eqs (1.4) and the continuity equation, the second
formula of (1.1). In this case they take the form

(4.1)

Using the new function q, such that

(4.2)

and taking into account the last equation of (4.1),we obtain

(4.3)

From the same considerations as in Section 1 when analysing the velocity field, we can represent the components of the momentum
vector ki in the form

(4.4)

where k̄i are the average values of ki, while k′
i
is their pulsating components. Substituting (4.4) into Eqs (4.3) and into the last equation of

(4.1), we obtain after averaging

(4.5)

In deriving the averaged equations (4.5) we took into account the fact that, as a result of the averaging of Eqs (4.3), terms containing
viscous stresses due to the Zhukovskii hypohtesis,12 are converted into the mass Darcy porous drag force. We have also assumed that the
compressibility of the fluid can be neglected on the left-hand sides of Eqs (4.3), and we have only taken it into account in the averaged
continuity equation. This approach is widely used13 in the theory of the compressible fluid flow in porous media.

The four equations (4.5) contain three components of the momentum vector k̄i and the quantity q̄ as the desired functions. However,
this system of equations is not closed, since it contains the terms k′

i
k′

j
. To establish their dependence on the average values k̄i we will use,

as previously, the Prandtl mixing path theory. As in Section 1, for this purpose we will consider a plane translational flow, parallel to the x
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axis, the average momentum of which kx = kx(y) depends on the transverse coordinate y. Repeating the discussion of Section 1, we obtain
for the quantity �ij = k′

i
k′

j
, for i = x and j = y,

(4.6)

The coefficient of proportionality A can be taken to be a constant quantity if we assume that the pulsations l′ will be less the greater
the pulsations k′

y. Assuming this assumption to hold for all flow fields, equality (4.6) can be extended to the case of any three-dimensional
motion and represented in the form

(4.7)

Introducing these quantities into equations of motion (4.5) we obtain

(4.8)

Here and below the bar above average quantities will be omitted. Equations (4.8), like Eqs (1.10), describe the change in the average
momentum for the fluid flow through a granular medium. However, the required functions in Eqs (1.10) are the components of the
velocity vector, whereas in Eqs (4.8) they are the components of the momentum vector.

The system consisting of the last equation of (4.5) and the three equations of (4.8) contain four required functions and enable us to
determine the velocity field and the pressures of the compressible fluid, using Eq. (4.2), if we know how the density � depends on the
pressure P.

Assuming the flow to be isothermal, this relation takes the form13

(4.9)

where P0 and �0 are the pressure and density for which the fluid phase (the liquid with the gas dissolved in it) and the gaseous phase (a gas
in the form of fine dust particles, freely moving in the pores) is in an equilibrium state, and 	 is an experimentally determined parameter.
When P < P0, by Henry’s law, the gas separates out from the liquid phase, and the overall density per unit volume of the liquid phase is
reduced, i.e., when P < P0 we have � < �0.

Substituting expressions (4.9) into Eq. (4.2), we obtain

(4.10)

where C is an integration constant.
As an example of the use of the equations obtained, we will again consider the solution of the above problem on the fluid flow in a plane

channel. Unlike the discussion in Section 3, on the boundary of the channel y = ±h we will specify a constant mass flow rate �, independent
of the x coordinate, i.e., ky( ± h) = ∓ � = const, and the value of the pressure function (4.2) at the points x = 0, y = 0 and x = a, y = 0 will be
denoted by qr and qw respectively. Henceforth we will assume

Then expression (4.10) then takes the form

(4.11)

If the flow field is such that the average inertial forces and effective viscosity forces are much less than the porous drag forces, the first
two terms in the first equation of (4.5) can be neglected, and we can obtain, together with the continuity equation of (the second formula
of (4.5)) a system of four equations in the four required functions ki and q. This system describes the flow of a compressible fluid in a
granular medium in the Darcy law approximation, and its solution reduces to solving Laplace’s equation for the function q.13 In this case
the solution of the above problem on the flow in a channel with permeable walls takes the form20

(4.12)

Formulae (4.11) and (4.12) show that the mass flow rate through the channel is given by the relation

(4.13)

It follows from formula (4.11) that �q < �r�P always, and consequently for a specified pressure drop, the mass flow rate (4.13) obtained
will always be less than the mass flow rate

(4.14)
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Fig. 4.

corresponding to Darcy’s law for a fluid with a constant density �r. The dependence of the ratio Q�/Qd on the value of the pressure-difference
parameter 
 = Pw/Pr is shown in Fig. 4 for a series of values of 	, where, when 	 = 0 (an incompressible fluid), we have Q� = QD. Note that, in
dimensionless form, the relation

coincides with the curve in the 	 = 0 plane (Fig. 3).Fig. 4
Formula (4.11) and the last of formulae (4.12) enable us to obtain an equation which defines the pressure distribution P̄ = P̄(x, y), P̄ =

P/Pr in the form

(4.15)

In the space P̄, x̃, ỹ the first formula of (4.15) defines a family of surfaces as a function of the parameter 	. Knowing the value of the
pressure Pw in the exit section of the channel we can find the coordinate x̃w corresponding to it and obtain the relation P̄ = P̄(x/a), since
x/a = x̃/x̃w . A series of curves P̄ = P̄(x̃, 0) for a number of values of the parameter 	 is shown in the upper part of Fig. 5. For example, for
	 = 0.5 and Pw = 0.2 Pr it turned out that x̃w = 0.76. A series of curves �̄ = �̄(x̃, 0) for the same values of 	 are given in the lower part of Fig. 5,
and we obtained a value �̄w = �(x̃w)/�r = 0.34 for the dimensionless density in the exit section of the channel. The corresponding points
in both parts of Fig. 5 are shown by the light circles.

Bearing in mind that y/a = ỹ/x̃w , and specifying the ratio h/a, for each section x we can construct the relation P = P(ȳ), which has a
minimum when ȳ = 0, i.e. on the axial line of the channel. Knowing the pressure field P̄ = P̄(x̄, ȳ), from formula (4.9) we can obtain the
density distribution � = �(x, y). In all the sections x the density has a minimum at the centre of the channel cross section and a maximum
on the walls. Consequently, the concentration of the gaseous phase is a maximum along the axial line of the channel and a minimum on
its walls. However, these differences are slight.

The graphs in Fig. 5 show that changes in the pressure and density along the channel axis depend very much on the compressibility
parameter 	. The pressure and density are practically constant in the transverse direction.
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If, in Eqs (4.8), the term in the square brackets is retained and the averaged inertia forces are neglected, the corresponding system of
equations for the plane case takes the form

(4.16)
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Equations (4.16) and the boundary conditions are identical, apart from the notation, with Eqs (3.1) and the boundary conditions
considered in Section 3, and consequently, their solution, by analogy with formulae (3.3), can be written as

(4.17)

where we have introduced the notation

If we assume that the variables x̃, ỹ in (4.15) have the form

the method of constructing the velocity and pressure field for the case considered is identical with the method described above for the
case of Darcy’s law. The difference between the graphs shown in Fig. 5 and the graphs for the case considered reduces solely to a change
of scale along the corresponding axes.

Formulae (4.17) show that

and the graphs of k̃x and k̃y against the dimensionless coordinate ȳ coincide with the graphs of ũ and �̃, shown in Fig. 2, respectively.
It follows from the last formula of (4.17) that the overall mass flow rate of the fluid through the channel Q� differs from the similar flow

rate ignoring the effective viscosity (4.13) by the factor (1 − 
). Consequently, the graph of the ratio Q�/((1 − 
)QD) against 
 coincides with
the one shown in Fig. 4.

The value of 
 varies from 0 to 1; 
 → 0 as � → 0 (the condition � → ∞ corresponds to Darcy’s law), and 
 − 1 as � → 0 (the condition
� = 0 corresponds to the absence of porous drag). For a specified value of the pressure difference �P = Pr − Pw the mass flow rate Q� (4.13),
corresponding to a compressible fluid, turns out to be less than the flow rate QD (4.14), corresponding to Darcy’s law for an incompressible
fluid, while the flow rate Q� = (1 − 
)Q� when both the compressibility and the effective viscosity are taken into account simultaneously
turns out to be less than the flow rate Q�, i.e., Q� < Q� < QD. Consequently, if both the compressibility and the effective viscosity are taken
into account, there is a considerable increase in the overall hydraulic drag of the channel, which is important in practice.
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